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Abstrad-The authors are concerned with harmonic waves propagating in a three-dimensional
composite. with periodic structure. consisting of anisotropic. elastic and piezoelectric crystals.
obtaining solutions by a mixed variational method. The electric field is treated as quasi-static. The
stress. displacement. electric displacement and electric scalar potential are field variables subject to
variations in a general variational principle. The matrix-eigenvalue problem is solved to give
approximate eigenfrequencies and the corresponding eigenstates. Numerical examples are given for
harmonic waves propagating in the gallium arsenide crystal with ellipsoidal inclusions of lithium
niobate.

INTRODUCTION

A mixed variational method has been proposed for the treatment of harmonic waves
propagating in one-, two- and three-dimensional clastic composites with periodic structure
(St:c Nemat-Nasser, 1972; Nemat-Nasscr et al., 1975; Nemat-Nasser and Minagawa, 1975;
Minagawa and Nemat-Nasser. 1976. 1977 ;",tv!imtgawa et al., 1981). In this paper, we shall
extend the analysis to the C.lse where each constituent of the composite displays piezoelectric
effects.

The electric field is assumed quasi-static, so that the equations of motion are coupled
with the static electric field equations. This coupling is represented by the elasto-piezoeleetric
constitutive equations. Since the piezoelectric effect is closely related to the anisotropic
structure of crystals. the analysis must be done by means of general anisotropic consti­
tutive equations. (On the piezoelectricity of crystals. see Cady. 1964; American National
Standard Institute. 1979.)

We shall start with a mixed variational principle extended for use in this case, where
the field variables subject to variations are the stress, displacement, electric displacement,
and electric scalar potential. These field variables are determined from among those satisfy­
ing the conditions of continuity and quasi-periodicity, by the condition that they render a
new quotient stationary with respect to their independent variations. The matrix eigenvalue
problem will be solved to give approximate eigenfrequencies and their corresponding
eigenstates. Numerical examples will be given for eigenfrequencies of harmonic waves in a
composite with ellipsoidal inclusions.

BASIC EQUATIONS

We assume a three-dimensional Cartesian coordinate system, with respect to which
the position of a material point is stated as x,. Throughout this paper. the lower case roman
indices i, j. k, ... take I. 2 or 3. and Einstein's summation convention is used for indices
appearing twice in one expression. A comma followed by an index (or indices) means the
derivative(s) with regard to the corresponding space coordinate(s).

For harmonic waves with frequency w. we have the following set of basic field
equations.
(a) Divergence equations:

(file.1e + ),PUj = 0, DIc•1e = O.
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where;' = w!. a;k(x) exp [±iwt]. u;(x) exp [±iwt] and D.(x) exp [±iwt] are the fields of

stress. displacement and electric displacement. t is the time. i = "r=I. and p the mass­
density of the material. The materials are assumed to be insulated so that no free electric
charges exist.
(b) Constitutive equations:

(2)

where e,.(x) exp [±iwt] and E,(x) exp [±it:Jt] are the strain and electric fields. and g,.p".
gp,•• gt. are the material tensors satisfying the following symmetry conditions:

(3)

(c) Gradient equations:

(4)

where II,(X) exp [± iwt] and <p(x) exp [± iwt] are the displacement and electric scalar poten­
tial fields. and the electric field is assumed to be quasi-static.

QUASI-PERIODICITY AND CONTINUITY

A three-dimensional composite with periodic structure is regarded as a collection of
identical unit cells which extend in all directions. and each consists of heterogeneous
materials. For the sake of simplicity. we assume that the unit cell is a rectangular par­
allelepiped. whose edges are defined by three vectors a I. a! and a,. which are parallel to
the three coordinate axes. respectively. a I. a 1 and a I are the lengths of vectors a I. a2 and
aJ. respectively.

The mass-density and the material tensors satisfy the following periodicity condition:

p(X) = p(x+map). gjk(X) = g,dx+ma/I).

gjkp(x) = gjkp(x+map). g,kpq(X) = g,kl'q(x+ma/I).

where 11 = I. 2, 3 and m is an integer.
Harmonic waves with wave vector q satisfy the quasi-periodicity conditions:

(5)

II;CX + ap) = II,(X) exp [iq' ap].

D;(x + a/I) = D;(x) exp [iq' ap].

a;k(x+a) = ajk(x) exp [iq'a/IL

<p(x + a/i) = <p(x) exp [iq' a,i]' (6)

across the boundary of a cell. where 1/ = I. 2. 3. For complete bonding at the interface
between adjacent materials.

(7)

where x + and x - are points on the opposite sides of the interface. and or is the unit vector
pointing from the minus to the plus side of the interface.

DIMENSIONLESS FIELD VARIABLES AND EQUATIONS

We use 01 as the unit length. and Po. gl. g3 and g~ as those of the mass-density and

the material tensors. i.e. gil' gi,k and g"pq. respectively. We take ail. aIJpog~. I/g~.
I/.jg~.q~. J.~/g~~ and aljqJg-: as the units of the wave vector. time. stress. electric



Analysis of harmonic waves 1903

displacement. electric field and electric scalar potential. respectively. to get the cor­
responding dimensionless field variables. In what follows, we use the same symbols to
denote the dimensional and dimensionless field variables.

Equations (I), (3) and (4)-(7) can be regarded as those ofdimensionless field variables,
as long as a.:(P094)-1 is used as the unit with which to measure }., while eqns (2) are
changed to

(8)

where

(9)

is the electromechanical coupling coefficient.

VARIATIONAL PRINCIPLE

It is easily verified that the solution of the set of equations in (I), (4) and (8) render
the functional

A.N = {«(1jk, U,.k) + (Uj.k, ajk) - (9jkpqajk, ap.,) - fiA(9p,k Dp, ajk) + (9p/ka/k, Dp»
+(Dp , 1'.,,) + (1',1" Dp ) + (9"k Db D,,)}/(fJU,. "l) (10)

stationary, and the stationary value implies A., where

(91l,v) = V -I j gIll)· d V, (II)

9 is a real-valued weighting function, Il and t' arc complex-valued functions of space
coordinates, t'· is the complex conjugate of P, V is the dimensionless volume of the cell,
and the integration extends over the entire cell.

The actual field variables are determined from among those satisfying conditions (6)
and (7), through the condition that they make the functional (10) stationary.

MATRIX EIGENVALUE PROBLEM

We use

to approximate the field variables as follows:

N N

aij(x) = L SfJ(x), uj(x) = L Uff'(x),
,- I ,_ I

N N

Dj(x) = L Dff'(x), ljJ(x) = L W'l"(x),
,- 1 ,- I

(12)

(13)

where iX, P. 'I are integers such that - M ~ IX. p, 'I ~ M, Sf" Uf, Df and W' are the complex
coefficients, 1= iX+ 1+M+(P+M)(2M+ 1)+(y+M)(2M+ 1)2, no =al/aZ' m o = ada3

and N = (2M + 1)3.

Substitute from eqn (12) into eqn (10), and upon differentiation with respect to t"e
unknown coefficients, obtain a set of linear equations for these coefficients as follows:
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HS+A.,VAV = 0, (14)

KD= 0, (15)

HtV+BS+~pCD = 0, (16)

KtW+~pCS-FD = 0, ( 17)

where t means transposed conjugate.
The bold letters stand for vectors and matrices as defined below: S, V and 0 are the

vectors such that

where S,/. V, and 0, are the N-vectors having Sfj , Vf and D; as their Ith components.
respectively. similarly. the Ith component of W is WI; T means transposed. On the other
hand.

( 19)

where HI. H ~ and H J are the N x N diagonal matrices having i{q1+ 21ta}, i{l/2 + 2rcfJn"1
and i{Q3+2rcYl1l,,} as their (I, I)-components. respectively.

Matrices H, A, B, C. F are given as foHows:

[", H 2 H J 0 0 :].H= ~ HI 0 H 2 H 3

0 HI 0 H 2 H 3

G IIII 2G II12 2G II13 G 1122 2G 112 .1 G II31

2G I211 4G I212 4G'~'J 2G 1222 4G 1223 2GI~J.l

B=
2G ,J" 4G I312 4G IJIJ 2G IJ22 4G IJ2J 2G 'JJJ

GUll 2G UI2 2G 22I J G uu 2G u2J G UJJ

2G 2JI1 4G 2J12 4G BIJ 2G 2J22 4G 2J2J 2G 2JJJ

G JJ11 2G JJI2 2G JJ, J G JJ22 2G JJ2J G JJJ3

[G" , 2G I12 2G "J G 12~ 2G I2J

G''']C= G 211 2G 212 2G 21J G:!:!:! 2G uJ G 2J3 •

G J1\ 2G JI2 2G J'J G 322 2GJ2J G)JJ

[G"
GI~

G"] [:
0

:].F = G 21 G Z2 G 2J , A= R

G JI G J2 G)J 0

(20)

(21 )

(22)

(23)

where R is an N x N matrix whose (I. J)-components are given by

(24)

a similar definition is used for G/b Gjkp and G,kl'q whose components are given by the
substitution of 9,k(X). 9,kl'(X) and 9/kl"'(X) for p(x) on the right-hand side of egn (24),0 is
the zero-matrix, J= (£5+I+M)+<Jt+M)(2M+I)+(r+M)(2M+I)2, and I has been
defined before.

Eliminate S. 0 and W from eqns (14)-(17) to obtain

(25)

where
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The values of ;"v are given as eigenvalues of eqn (25). and U as their corresponding
eigenvectors. D. Sand Ware given through

The corresponding field variables are given by the substitution of these solutions into eqn
(13).

NUMERICAL EXAMPLE

We calculate the eigenfrequencies of harmonic waves in a three-dimensional composite
with ellipsoidal inclusions. The ellipsoidal inclusion is centered with respect to the celt in
such a manner that its three axes are placed parallel to each side of the celt. the corresponding
diameters being bh b2 and b3• respectively. Let g~. g~p. g/kpq. p/ be the material
constants of the inclusions. and .¢;. !l!kp. !l!kpq. pm those of the matrix. We put

where

g2 = Max (ll",lgikl +lI/lg/kn. g3 = Max (1I",lgikpl +n,lgikpl).

94 = Max (lIml.qikpq l +lI,lg~pql), Po = limP'" +1111/. (28)

(29)

The unit of frequency of the harmonic waves is given by I I(a I JI'u9~) and that of their

phase velocity by IIJP;i.
The (I, l)-componcnts of R, G,k> G/kp and Gjkpq are given by the substitution of those

dimensionless parameters for g} and g'" in the right-hand side of

where

G(l, l) = 11",9'" +lI[g'

= 311}(g[-g"')R- 2{R- 1 sin (R) -cos (R)}

if 1= l,

if I :/;}, (30)

and we have used 1JdR) = {2/(1tR)} li2{ R- I sin (R) -cos (R)} (see Minagawa and Nemat­
Nasser. 1976).

We calculate the case where the composite is composed of gallium arsenide (matrix)
and lithium niobate (inclusions). These crystals-the former is cubic .md the latter
trigonal-are placed in such a manner that their standard reference frames are identical to

~ Note that N is an N x ,V-matrix and K'N - I K is an 3N x 3N-matrix such that

SAS 29:14/15-0
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Table I. Material constants

Elastic constants (x 10'0 i'm-')

Piaoekctric constant (em ')

Dielectric constant (x lO - '0 Fm ')

Mass density (x (0) kgm -)

GaAs LiNbO,

('I j 11.81 20.3
C l \ 24.5
c, 5.32 5.3
C j , 7.5
C·J. 0.9
C ..(.! 594 6.0
Cltf! 7.4

(:'1.- -0.16
e T ~ 3.76
t' ' ~ 2.43
ell 0.23
L'n 133

f: 1 ! 1.108 3922
fIt 2.470

P 5.317 4.64

T'lbh: 2. Phase velocities of harmonic waves in a three-dimensional
composite with ellipsoidal inclusions (GaAs/LiNbO,)

f:,. 0.0 0,49R9E - 2

« 0.001 n.5 0.001 0.5

Acoustical 0.29ROE+4 0.2974E +4 0.30X3E+4 0.3070E+4
(U023E+4 O.30UE+4 (UIIOE+4 O.3(OIE+4
O.56X4E +4 0.567RE+4 o 5732E+4 0.572XE+4

Optical OAIOXE+ 7 O.t'>292E+ 7 1l,42ME+4 06526E+4
llAIOXE+7 O.t'>7!J')E+ 7 042XXE + 4 O.t1XXt'>E +4
OAI12E + 7 1.010.lE+7 OA.'20E + 4 1.0409E+4

(t1,:t1,:Il,=1:2:3, h,jll:=O.9, h,/Il)=O.X. b,ill,=O.7.
«, =«) =<{, ='Il·

the coordinate frame so that the material constants arc given as in Table I. The 5/l ko 5/l kp and
!Ilk I'" arc estimated from these parameters by the method of matrix-inversion, and the values
of5l~, 51,. 5/4 and fop are given through eqns (9) and (2~). The lowest six phase velocities are
given for the two values of q in Table 2. with those of an unrealistic limiting case where the
piezoelectric stress constants of both the matrix and inclusions are zero. while the other
parameters are unchanged. The computations were carried out by the crudest approxi­
mation such as M = I and N = 27, and the other parameters used in computations are
given in Table 2.
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