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Abstract—The authors are concerned with harmonic waves propagating in a three-dimensional
composite, with periodic structure, consisting of anisotropic, elastic and piezoelectric crystals,
obiaining solutions by a mixed variational method. The electric field is treated as quasi-static. The
stress, displacement, electric displacement and electric scalar potential are field variables subject to
variations in a general variational principle. The matrix-eigenvalue problem is solved to give
approximate eigenfrequencies and the corresponding eigenstates. Numerical examples are given for
harmonic waves propagating in the gallium arsenide crystal with ellipsoidal inclusions of lithium
niobate.

INTRODUCTION

A mixed variational method has been proposed for the treatment of harmonic waves
propagating in one-, two- and three-dimensional elastic composites with periodic structure
(sce Nemat-Nasser, 1972 ; Nemat-Nasser ef al., 1975 ; Nemat-Nasser and Minagawa, 1975;
Minagawa and Nemat-Nasser, 1976, 1977 ; Minagawa et al., 1981). In this paper, we shall
extend the analysis to the case where cach constituent of the composite displays piczoelectric
effects.

The electric field is assumed quasi-static, so that the equations of motion are coupled
with the static electric ficld equations. This coupling is represented by the elasto-piezoelectric
constitutive equations. Since the piczoelectric effect is closely related to the anisotropic
structure of crystals, the analysis must be done by means of general anisotropic consti-
tutive equations. (On the piczoclectricity of crystals, see Cady, 1964 ; American Nattonal
Standard Institute, 1979.)

We shall start with a mixed variational principle extended for use in this case, where
the field variables subject to variations are the stress, displacement, electric displacement,
and electric scalar potential. These ficld variables are determined from among those satisfy-
ing the conditions of continuity and quasi-periodicity, by the condition that they render a
new quotient stationary with respect to their independent variations. The matrix eigenvalue
problem will be solved to give approximate eigenfrequencies and their corresponding
cigenstates. Numerical examples will be given for eigenfrequencies of harmonic waves in a
composite with ellipsoidal inclusions.

BASIC EQUATIONS

We assumc a threc-dimensional Cartesian coordinate system, with respect to which
the position of a material point is stated as x,. Throughout this paper, the lower case roman
indices 4, j, k,... take 1, 2 or 3, and Einstcin's summation convention is used for indices
appearing twice in onc expression. A comma followed by an index (or indices) means the
derivative(s) with regard to the corresponding space coordinate(s).

For harmonic waves with frequency w, we have the following set of basic field
equations.

(a) Divergence equations :

Guxtipu; =0, Dy =0, )
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where 4 = 0%, g,(x) exp [+iwt], u(x) exp [+ iwt] and D,(x) exp [+ iwe] are the fields of
stress. displacement and electric displacement. ¢ is the time, i = \/-_l. and p the mass-
density of the material. The materials are assumed to be insulated so that no free electric
charges exist.

(b) Constitutive equations :

€k = GupyOpy +gpu Dy E, = ~ 904004 + 95 Di. (2)

where ¢, (x) exp [+iwt] and E (X) exp [ +iwt] are the strain and electric fields. and Gikpge
9ok 95 are the material tensors satisfying the following symmetry conditions:

Gikoy = Grjpq = Gikap = pajks Goik = Gokjs G = iy 3)
(c) Gradient equations:
e/k = %(“]Jt'*'uk./)' E/ = _d)‘jv (4)

where u,(x) exp [+ iwt] and ¢(x) exp [+ iwt] are the displacement and electric scalar poten-
tial ficlds, and the electric field is assumed to be quasi-static.

QUASI-PERIODICITY AND CONTINUITY

A three-dimensional composite with periodic structure is regarded as a collection of
wdentical unit cells which extend in all directions, and cach consists of heterogeneous
materials. For the sake of simplicity, we assume that the unit cell is a rectangular par-
allelepiped, whose edges are defined by threc vectors a,, a, and a,, which arc paraliel to
the three coordinate axes, respectively. a,. «, and a. are the lengths of vectors a,, a, and
a,, respectively.

The mass-density and the matenial tensors satisfy the following periodicity condition :

P(X) = p(x+may).  gu(x) = gu(x+may),
g/kp(x) = g/lqr(x +’na[])- g;kpq(x) = g[/(/u/(x +mu,,), (5)
where f =1, 2, 3 and m is an integer.
Harmonic waves with wave vector q satisfy the quasi-periodicity conditions:
u(x+ay) = u(x) exp [iq-az], o(x+2a) = o,(x)exp [iq-ay,
D,(x+ay) = D,(x) exp [iq-a,]. d(x+ay) = $(x) exp [ig-a,]. (6)

across the boundary of a cell, where # = 1, 2, 3. For complete bonding at the interface
between adjacent materials,

u(x )y =u(x"), [ou(x")—au(x )] =0, )

where x* and x~ are points on the opposite sides of the interface, and t is the unit vector
pointing from the minus to the plus side of the interface.

DIMENSIONLESS FIELD VARIABLES AND EQUATIONS

We use a, as the unit length, and p,. ¢g.. g; and g, as those of the mass-density and
the material tensors, i.e. g,, g« and g,,,. respectively. We take ar', ai/pogs /9.
1//9:9.. \/qg/g4 and a.\/g:/g4 as the units of the wave vector, time, stress, electric
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displacement, electric field and electric scalar potential, respectively, to get the cor-
responding dimensionless field variables. In what follows, we use the same symbols to
denote the dimensional and dimensioniess field variables.

Equations (1), (3) and (4)—(7) can be regarded as those of dimensionless field variables,
as long as a7 *(pogs) "' is used as the unit with which to measure Z, while eqns (2) are
changed to

€ = GipyGpq+ \/éngjka E = —\/EPQJP’IGP(I +gDe. ®
where

&r = (9:)*/(9:94) &)

is the electromechanical coupling coefficient.

VARIATIONAL PRINCIPLE

It is easily verified that the solution of the set of equations in (1), (4) and (8) render
the functional

iy = {(‘T/In “,.k) + QUi O )~ GikpyOikr Tpg) = \/EP(<yplkDp~ 0"/k>+ {Gpik Tk D,,))
LD >+ LB 4 D>+ gD D) puyp 1> (10)

stationary, and the stationary value implics 4, where
{gu, vy = V"Jguv"’dV, an

¢ is a real-valued weighting function, « and ¢ arc complex-valued functions of space
coordinates, v* is the complex conjugate of v, V is the dimensionless volume of the cell,
and the integration extends over the entire cell.

The actual field variables are determined from among those satisfying conditions (6)
and (7), through the condition that they make the functional (10) stationary.

MATRIX EIGENVALUE PROBLEM

We use

S1(x) = exp [i{q - x+2n(ax, + Brgx, +ymox;)}], (12)

to approximate the field variables as follows:
N N
G'i;(x) = Z S:!j (x), “j(x) = Z U}f:(x)-
fwi} te=}
N N
Di(x)= Y. Dif'(x), ¢(x)= Y Wf'(x), (13)
le] =1

where 2, f3, y are integers such that — M < a, 8,y < M, S/, U], D! and W' are the complex
coefficients, / = a+ 1+ M+(B+M)CM+ 1)+ +M)QM+1)?, ny = a,/as, my = a,/a;
and N = M +1)°.

Substitute from eqn (12) into eqn (10), and upon differentiation with respect to the
unknown coefficients, obtain a set of linear equations for these coefficients as follows :
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HS +,AU =0, (14)
KD =0, (15)
H'U+BS+./¢,C'D = 0, (16)
K'W+./c,CS—FD =0, (17)

where T means transposed conjugate.
The bold letters stand for vectors and matrices as defined below: S, U and D are the
vectors such that

S==[Sl1.513.5.}.532.523,533]T, U=[U1,U:,U3]T, D=[D,,D1,D_‘]r. (18)

where S,. U, and D, are the N-vectors having S, U/ and D] as their /th components,
respectively, similarly, the /th component of W is W' T means transposed. On the other
hand.

K=[HthvHJ]» (19)

where H,, H, and H, arc the N x N diagonal matrices having i{q, +2na}, i{q,+2nfin,}
and i{g,+2rym,} as their (I, I)-components, respectively.
Matrices H, A, B, C, F are given as follows:

H, H, H, 0 0 0

H=|0 H, 0 H, H, 0|, (20)
0 0 H, 0 H, H,

i Gllllm2(;|l|2 ZGIIIJ Gllll 2GllZ,‘ GI!J}’
2GIZII 4GIZIZ 4Gllll 2GI222 4G1223 2Gl2}.‘
2(;llHI 4Gl]l2 4Gl)l) 2GI)22 4Gl]23 2(;1}))
GZZH 2CZ;’I2 2G2’|] GZIZ‘.’ 2G2223 (;2233
2G23H 4G2)|2 4C23l) 202322 4GZJZS 2GZ]3]
203.\23 GJJ}.‘_

GIII ZGHZ 2Glll C;l“ 2G|2$ Gll]

C=|G: 2Gy2 2Gy; Gony 2Gyy; Goys | (22)
Gyt 2Gyy 2Gyy; Gy 2Gyy; Gy
G, G, G R 0 O

F=|G, Gy Gul|, A=|0 R 0], (23)
G; G, Gy, 0 0 R

where R is an N x N matrix whose ([, J)-components are given by
R(LJ) = <p(x) ' 1) (24)

a similar definition is used for G, Gy, and G, whose components are given by the
substitution of g, (X). gu,(x) and g,,,(x) for p(x) on the right-hand side of eqn (24), 0 s
the zero-matrix, J = (5+l+M)+(;L+M)(2M+l)+(t+M)(2M+l)3, and 7 has been
defined before.

Eliminate S. D and W {rom eqns (14)~(17) to obtain
HL-'H'U-1,AU =0, 25

where
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L=B+¢C'MC, M=F '—F'K'N"'KF~!, N=KF 'K" (26)1

The values of iy are given as eigenvalues of eqn (25), and U as their corresponding
eigenvectors. D, S and W are given through

D=/eMCS, W=—/e;N"'KF'CS, S=-L"'H'U. (27)

The corresponding field variables are given by the substitution of these solutions into eqn
(13).

NUMERICAL EXAMPLE

We calculate the eigenfrequencies of harmonic waves in a three-dimensional composite
with ellipsoidal inclusions. The ellipsoidal inclusion is centered with respect to the cell in
such a manner that its three axes are placed parallel to each side of the cell. the corresponding
diameters being by, b, and b;. respectively. Let Gk Ghoe Glhp- P’ be the material
constants of the inclusions. and g, gk, Fine. p™ those of the matrix. We put

g: = Max (nlgil +m1gkD. g5 = Max (n,1g,1 + /19, D.
g4 = Max (nmlg;;t'pql+n[lg],k—pql)t /’o = nmpm+"t'pr~ (28)

where

Ny = ! —Np, Ny = (n/6)h|bzb3/alazﬂ_|. (29)
The unit of frequency of__thc harmonic waves is given by l/(a[\/b',,'g;;) and that of their
phase velocity by 1/, /peg..

The (1, J)-components of R, Gy, Gy, and G, are given by the substitution of those
dimensionless parameters for g/ and g™ in the right-hand side of

G(L) = n,,.g"'-{»n,g’ if I=J,
=3n,(g’ ~g™R*{R™"sin (R)—cos (R)} if [#J, (30)
where
R =n{bja\) (6—a)*+ (brfar)*(u—B) +(byJay) (r—)} "2, 3n

and we have used J,,,(R) = {2/(zR)} "*{R~" sin (R) —cos (R)} (see Minagawa and Nemat-
Nasser, 1976).

We calculate the case where the composite is composed of gallium arsenide (matrix)
and lithium niobate (inclusions). These crystals—the former is cubic and the latter
trigonal—are placed in such a manner that their standard reference frames are identical to

$ Note that N is an ¥ x ¥-matrix and K'N~'K is an 3N x IN-matrix such that

H!N-'H, H!N-'H, H'N-'H,
H{N-'H, HN-'H, H,N-'H,
HIN-'H, H'N-'H, H)N-'H,

SA8 29:14/13%-0
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Table I. Material constants

GaAs  LiNbO,

Elastic constants ( x 10' Nm %) ¢y 11.81 203
Cay 245
[ 532 s3
[ 7.5
oy 0.9
Cas 5.94 6.0
Cha 7.4
Piczoelectric constant (cm ™) e, -0.16
s 3.76
e 2.43
vy 0.23
¢ 1.33
Dielectric constant { x [0 Fm ™) € 1.108 3922
£y 2.470
Mass density ( x 10* kgm %) I 5317 4.64

Table 2. Phase velocities of harmonic waves in a three-dimensional
composite with ellipsoidal inclusions (GaAs/LiINBO,)

£p 0.0 0.4989E -2
q 0.001 0.5 0.001 0.5
Acoustical  0.2980E+4  0.2974E+4  0.3083E+4  0.3070E+4

0.3023E+4 03013E+4 031I0E+4 OI0IE+4
0.5684F +4 0.5678E+4 0.3732E+4 0S728E+4

Optical 04108E+7 0.6292E+7 042646 +4 0.6526E+4
O4108E +7  0.67T09E+7 04288E+4  0.6886F +4
RSl 12E+7 1O0103E+7 043206 +4  1.0409E +4

{ayia,iay, = 1:2:3, bju, =09, bja, =08, byju, =07,
Gy =4y = =g

the coordinate frame so that the material constants are given as in Table 1. The gy, g4, and
upg are estimated from these parameters by the method of matrix-inversion, and the values
of .. g1, g4 and &, arc given through egns (9) and (28). The lowest six phase velocities are
given for the two values of q in Tuble 2, with those of an unrealistic limiting case where the
piczoclectric stress constants of both the matrix and inclusions are zero, while the other
parameters are unchanged. The computations were carricd out by the crudest approxi-
mation such as M = | and N = 27, and the other parameters used in computations are
given in Table 2.

Acknowledgement—One of the authors work (S. Nemat-Nasser) wis supported by the U.S. Army Research Office
under Contract No, DAAL 03-86-K-0169 to the University of California, San Diego.

REFERENCES

American National Standard Institute (1978). IEEE standurd on piczoelectricity. [EEE, Inc.

Cady, W. G. (1946). Piezoelectricity. McGraw-Hill. (Also Dover, 1964.)

Minagawa, S. and Nemat-Nasser, S. (1976). Harmonic waves in three-dimensional elastic composites. fnt. J.
Solids Structures 12, 769-777.

Minagawa, S. and Nemat-Nasser, S. (1977). On harmonic waves in layered composites, J. Appl. Mech. 99, 685~
695.

Minagawa, S., Nemat-Nasser, S. and Yamada, M. (1981). Finite clement analysis of harmonic waves in layered
and fiber-reinforced composites. /nt. J. Numer. Meth. Engng 17, 1335-1353,

Nemat-Nasser. S. (1972). General variational methods for waves in clastic composites. J. Elusticity 2, 73-90.

Nemat-Nasser, S., Fu, F. C. L. and Minagawa, S. (1975). Harmonic waves in one-, two- and three-dimensional
composites : bounds for cigenfrequencics. Int. J. Solids Structures 11, 617-642.



